ABSTRACT ALGEBRA
 EXERCISE SHEET 10

PROF. DANIEL SKODLERACK

Problem 1 (10 points). Prove Proposition 103.
Problem 2 (10 points). Let A be a UFD and $\mathrm{P} \in \mathrm{A}[X]$ be a non-zero polynomial.
(i) Show that the content of P , see Definition 99, is well-defined.
(ii) Prove Proposition 100.

Problem 3 (10 points). Find the greatest common divisor of the following two polynomials.

$$
X^{6}+3 X^{5}+7 X^{4}+12 X^{3}+15 X^{2}+9 X+9, X^{4}+6 X^{3}+13 X^{2}+12 X+3
$$

Problem 4 (10 points). Consider the polynomials $\mathrm{P}\left(X_{1}, X_{2}, X_{3}\right):=X_{1}^{2}+X_{1}^{2} X_{2}+X_{1} X_{2} X_{3}$ and

$$
\mathrm{Q}:=\Sigma_{\sigma \in \mathfrak{S}_{3}} \sigma(\mathrm{P}) .
$$

all as polynomials in $\mathbb{Z}\left[X_{1}, X_{2}, X_{3}\right]$. Find a polynomial $\tilde{\mathrm{Q}} \in \mathbb{Z}\left[U_{1}, U_{2}, U_{3}\right]$ of weight 3 such that $\tilde{\mathrm{Q}}\left(S_{1}, S_{2}, S_{3}\right)=\mathrm{Q}$ where S_{1}, S_{2}, S_{3} are the elementary symmetric polynomials in $X_{i}, i=1,2,3$.

[^0]
[^0]: Date: Please hand in before the lecture by 06.05.2021. For all exercises the results need to be proven.

